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We extend our approach for the exact solution of the Riemann problem in relativistic
hydrodynamics to the case in which the fluid velocity has components tangential to
the initial discontinuity. As in one-dimensional flows, we show here that the wave
pattern produced in a Riemann problem with multi-dimensional relativistic flows can
be predicted entirely by examining the initial conditions. Our method is logically
very simple and allows for a numerical implementation of an exact Riemann solver
which is both straightforward and computationally efficient. The simplicity of the
approach is also important for revealing special relativistic effects responsible for a
smooth transition from one wave pattern to another when the tangential velocities
in the initial states are suitably varied. Although this paper is focused on a flat
space–time, the local Lorentz invariance allows its use also in fully general relativistic
calculations.

1. Introduction
Since the solution of the Riemann problem was introduced in numerical hydro-

dynamics (Godunov 1959), high-resolution shock capturing methods have become a
common tool for handling nonlinear hydrodynamical waves in a variety of physical
situations and the subject of detailed mathematical analyses both in Newtonian
(Leveque 1992, 2002; Toro 1997) and relativistic regimes (Smoller & Temple 1993).
Nonlinear waves of this type are very common in astrophysical scenarios (such
as gamma-ray bursts, accretion onto compact objects, relativistic jets, supernova
explosions) in which the motion of the fluid is characterized by relativistic speeds
and by the appearance of strong discontinuities (see Ibañez & Martı́ 1999; Martı́
& Müller 1999; for a review). Rezzolla & Zanotti (2001 hereinafter referred to as
paper I) proposed a new procedure for the exact solution of the Riemann problem
which uses the relativistically invariant relative velocity between the unperturbed ‘left’
and ‘right’ states of the fluid. They extracted important information contained in the
initial data that more traditional approaches were not able to put into evidence. Most
notably, it was shown that, given a Riemann problem with assigned initial conditions,
it is possible to determine in advance both the wave pattern that will be produced
after the removal of the initial planar discontinuity and the bracketing interval of the
unknown pressure in the region that forms behind the wavefronts. Besides clarifying
some aspects of the Riemann problem, the approach proposed by Rezzolla & Zanotti,
and that was foreseen by Landau & Lifshitz (1987) in Newtonian hydrodynamics,



200 L. Rezzolla, O. Zanotti and J. A. Pons

was shown to be computationally more efficient as compared to the more traditional
approaches.

The analytic solution of the one-dimensional Riemann problem (Martı́ & Müller
1994) has been extended recently to the case in which non-zero velocities tangential to
the initial planar discontinuity are present (Pons, Martı́ & Müller 2000). An important
result obtained by Pons et al. (2000) was to show that the introduction of tangential
velocities and the appearance of global Lorentz factors linking quantities on either
side of the discontinuity can affect the solution of the Riemann problem considerably.
In the present paper, we show that the approach by Rezzolla & Zanotti can be
successfully extended to this more general case and with the same advantages that
were found in the case of zero tangential velocities. Within this new procedure, the
introduction of tangential velocities is imprinted in the expression for the jump of
the velocity normal to the discontinuity surface, and this has allowed us to reveal
interesting special relativistic effects. In relativistic hydrodynamics, in fact, the wave
pattern produced by the decay of the initial discontinuity can be changed by simply
varying the tangential velocities in the initial states, while keeping the rest of the
thermodynamic quantities of the Riemann problem unmodified. This effect has no
analogue in Newtonian hydrodynamics (Rezzolla & Zanotti 2002).

The plan of the paper is as follows. After a review of the method in § 2, we report
in § 3 the hydrodynamical equations relevant for the present discussion of non-zero
tangential velocities. In § 4, we show how to use the invariant relative velocity to
extract from the initial data the information on the wave pattern produced, while
§ 5 is devoted to the presentation of the special relativistic effects. The conclusions
of the paper are in § 6, and three Appendices complete the discussion providing the
mathematical details of the results obtained in the main text.

We use in this paper a system of units in which c = 1, a space-like signature
(−, +, +, +) and a Cartesian coordinate system (t, x, y, z). Greek indices are taken to
run from 0 to 3, Latin indices from 1 to 3 and we adopt the standard convention for
the summation over repeated indices.

2. A brief review of the method
In a flat space–time consider a perfect fluid described by the stress-energy tensor

T µν ≡ (e + p)uµuν + pηµν = ρhuµuν + pηµν, (2.1)

where ηµν = diag(−1, 1, 1, 1) and e, p, ρ and h are the proper energy density the
isotropic pressure, the proper rest-mass density and the specific enthalpy, respectively.
The evolution of the fluid is described by the relativistic Euler equations ensuring the
conservation of energy and momentum

T µν
,ν = 0, (2.2)

as well as the conservation of baryon number

(ρuµ),µ = 0. (2.3)

The set of equations (2.2) and (2.3) is closed after an equation of state (EOS) is
specified which relates the pressure to the rest-mass density or other thermodynamical
quantities. The numerical solution of the set of relativistic hydrodynamic equations
(2.2) and (2.3) is particularly convenient when these are written in the conservative
form

U ,t + F(i)
,i = 0 (2.4)
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where U is the vector of conserved variables, with components

U ≡ (D, Sj , τ )T (j = 1, 2, 3), (2.5)

and F(i) = F(i)(U) are the vectors of fluxes, with components

F(i) ≡ (Dvi, Sjvi + pδji, Si −Dvi)T (i, j = 1, 2, 3). (2.6)

The conserved variables D, Si and τ are defined in terms of the primitive variables
ρ, vi and ε, according to the following set of non-invertible relations

D ≡ ρW, (2.7)

Si ≡ ρhW 2vi, (2.8)

τ ≡ ρhW 2 − p −D. (2.9)

Assume now the fluid to consist of an initial ‘left’ state (indicated with an index 1)
and an initial ‘right’ state (indicated with an index 2), each having prescribed and
different values of uniform pressure, rest-mass density and velocity. The two dis-
continuous states are initially separated by a planar hypersurface Σ0 placed at a
constant value of the x coordinate so that the unit space-like four-vector n

µ
0 normal

to this surface at t = 0 has components n
µ
0 ≡ (0, 1, 0, 0). Notice that, in contrast with

Newtonian hydrodynamics, in special relativity, this surface Σ0 is of constant time
only for the set of inertial frames connected by a boost in the direction normal to the
initial discontinuity or by spatial rotations. In a different set of inertial frames, in fact,
a hypersurface of constant time consisting of a single initial discontinuity separating
two constant states will not exist. Rather, the ‘initial states’ will be more complex and
reflect the rich structure of the solution of the Riemann problem.

Because we are considering a multi-dimensional flow, the fluid four-velocity on
either side of the initial discontinuity is allowed to have components in spatial
directions orthogonal to n

µ
0 , i.e.

uµ ≡ W (1, vx, vy, vz), (2.10)

where W 2 = (1 − v2)−1 is the square of the Lorentz factor and v2 ≡ vivi = (vx)2 +
(vy)2 + (vz)2 is the norm of the three-velocity. As a result, the initial left and right
fluid states are completely described in terms of the ‘state vectors’

Q1,2(x) =
(
p, ρ, vx, vt

)T

1,2
, (2.11)

where we have indicated with vt ≡ [(vy)2 + (vz)2]1/2 the tangential component of
the three-velocity, satisfying the obvious relativistic constraint that (vt )2 + (vx)2 � 1.
Hereinafter, we will refer to vx as the normal velocity.

Within this framework, the fluid states Q1(x) and Q2(x) represent the initial
conditions of a Riemann problem with multi-dimensional relativistic flows, that is,
of a Riemann problem whose initial states depend on one spatial coordinate only,
but where the velocity is relativistic and has more than one non-zero component.
The solution to this problem consists of determining the flow that develops when the
system is allowed to relax. In general, the temporal evolution can be indicated as
(Martı́ & Müller 1994)

LW←L∗CR∗W→R, (2.12)

where W denotes a nonlinear wave (either a shock, S, or a rarefaction wave,
R), propagating towards the left (←) or the right (→) with respect to the initial
discontinuity. Moreover, L∗ and R∗ are the new hydrodynamic states that form behind
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the two nonlinear waves propagating in opposite directions. A contact discontinuity,
C, separates the region L∗ and R∗, and it is characterized by the fact that both the
pressure and the normal velocity are continuous across it, whereas both the rest-mass
density and the tangential velocities can be discontinuous.

The new approach, first introduced in paper I, focuses on (vx
12)0, the relativistic

invariant expression for the initial relative velocity between the two unperturbed
initial states. By construction, this quantity measures the relativistic jump of the fluid
velocity normal to the discontinuity surface. The solution of the relativistic Riemann
problem is then found after the pressure in the region between the two nonlinear
waves, p∗, is calculated as the root of the nonlinear equation

vx
12(p∗)−

(
vx

12

)
0
= 0, (2.13)

where vx
12(p∗) has a functional form that is different for each of the three possible

wave patterns that might result from the decay of the initial discontinuity. The key
feature of the new approach is that the wave pattern produced by the decay of the
initial discontinuity can be entirely predicted in terms of the initial data Q1,2. This
represents an important advantage since it allows us to deduce in advance which set
of equations to use for the solution of the exact Riemann problem and the interval
bracketing the root of (2.13) (see paper I for details on the numerical implementation
of the new approach). This, in turn, translates into a simpler logical formulation of
the Riemann problem and into more efficient numerical algorithms with a reduction
of the computational costs. Furthermore, and as we shall discuss in § 5, this new
strategy has been essential in revealing new special relativistic effects.

The extension of the approach presented in paper I to the case when tangential
velocities are present is straightforward since in this case also the expression for the
normal relative velocity vx

12 is invariant under a Lorentz boost in the x-direction (i.e.
a special Lorentz transformation). As a result, (2.13) as well as the logical scheme
presented in paper I apply unmodified. The only changes introduced by the presence
of tangential velocities are restricted to the expressions for the limiting values of
the relative velocity (ṽx

12)2S , (ṽx
12)SR and (ṽx

12)2R . The details of these changes will be
presented in the following sections which have been written for a generic EOS and
use an ideal fluid EOS as a test case.

3. Hydrodynamical relations across the waves
As discussed in § 2, the expression for the relative normal velocity between the two

initial states of the Riemann problem represents the building block in our approach
and, to simplify our notation, hereinafter we will refer to the different flow regions
using the following mapping

LW←L∗CR∗W→R ⇐⇒ 1W← 3 C 3′ W→ 2, (3.1)

so that, for instance, p∗ = p3 = p3′ .
While the values of vx

12 are relativistic invariants under a Lorentz boost in the
x-direction, there exists a reference frame which is better suited to evaluate this
quantity. In the reference frame of the contact discontinuity, in fact, the normal
velocities behind the nonlinear waves are, by definition, zero (i.e. vx

3,C = 0 = vx
3′,C) and

the relative velocities across the nonlinear waves measured in this reference frame
will be (

vx
13

)
,C ≡

vx
1,C − vx

3,C

1−
(
vx

1,C
)(

vx
3,C

) = vx
1,C, (3.2)



An improved exact Riemann solver for multi-dimensional relativistic flows 203

(
vx

23′

)
,C ≡

vx
2,C − vx

3′,C

1−
(
vx

2,C
)(

vx
3′,C

) = vx
2,C. (3.3)

Because of their invariance to Lorentz boosts in the x-direction, the normal velocity
jumps across the nonlinear waves measured in the Eulerian frame can be ex-
pressed as (

vx
13

)
=

vx
1 − vx

3

1− vx
1v

x
3

=
(
vx

13

)
,C = vx

1,C, (3.4)

(
vx

23′

)
=

vx
2 − vx

3′

1− vx
2v

x
3′

=
(
vx

23′

)
,C = vx

2,C. (3.5)

As a result, the relative normal velocity between the two initial states can be written
as

vx
12 =

(
vx

12

)
,C =

vx
1,C − vx

2,C

1−
(
vx

1,C
)(

vx
2,C

) . (3.6)

In what follows, we will briefly discuss how to calculate the normal velocity jump
across a shock wave and a rarefaction wave, respectively. The expressions derived in
this way will then be used to calculate vx

1,C and vx
2,C necessary to build vx

12 = vx
12(p∗)

(cf. (3.6)).

3.1. Jumps across a shock wave

Calculating jump conditions in the rest frame of the shock front is not particularly
advantageous when tangential velocities are present. In this case, in fact, the velocity
jump across the shock cannot be expressed as an algebraic relation among the
thermodynamical quantities across the shock (cf. (3.1) of paper I). Rather, the ratio
of the velocities ahead of and behind the shock front must be found as a root
of a nonlinear equation (Koenigl 1980). For this reason, it is more convenient to
use the Rankine–Hugoniot conditions in the Eulerian reference frame. In particular,
adopting the standard notation in which the difference of a quantity evaluated behind
(subscript b) and ahead (subscript a) of the wave is denoted as [[F ]] ≡ Fa−Fb (Anile
1989), these conditions can be expressed as (see also Pons et al. 2000)

[[vx]] = − J

Ws

[[1/D]], (3.7)

[[p]] =
J

Ws

[[Sx/D]], (3.8)

[[Sy/D]] = 0 = [[Sz/D]], (3.9)

[[vxp]] =
J

Ws

[[τ/D]]. (3.10)

In (3.7), (3.8) and (3.10), J represents the invariant (under Lorentz boosts in the
x-direction) mass flux across the shock

J ≡ WsDa

(
Vs − vx

a

)
= WsDb

(
Vs − vx

b

)
, (3.11)

and Ws ≡ (1 − V 2
s )−1/2 is the Lorentz factor of the shock velocity Vs , with the latter

being

V ±s =
ρ2

aW
2
a vx

a ± |J |
√

J 2 + ρ2
aW

2
a

[
1−

(
vx

a

)2]
ρ2

aW
2
a + J 2

, (3.12)
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and with the ± signs referring to a shock wave propagating to the right or to the left,
respectively.

We can now exploit (3.7)–(3.10) to express the normal velocity of the fluid on the
back of the shock front in terms of the pressure as

vx
b =

haWav
x
a + Ws(pb − pa)/J

haWa + (pb − pa)
[
Wsvx

a

/
J + 1/(ρaWa)

] . (3.13)

Besides giving the jump in the normal velocity across a shock wave, (3.13) states
that the two regions of the flow across the shock wave are coupled through a
Lorentz factor which, we recall, is also built in terms of the tangential velocities.
This is a purely relativistic feature and an important difference from Newtonian
hydrodynamics, in which the solution of the Riemann problem does not depend on
the tangential component of the flow. Some of the consequences introduced by this
coupling will be further discussed in § 5, but one of them can be deduced immediately
from (3.9), indicating that the ratio vy/vz remains unchanged through shocks so that
the tangential velocity three-vector does not rotate, but can change its norm. This
property, which applies also across rarefaction waves, represents a major difference
from the behaviour of the tangential three-velocity vector across Newtonian nonlinear
waves, which does not rotate, or change its norm: [[vy]] = 0 = [[vz]].

The square of the mass flux across the wave can be expressed as

J 2 = − [[p]]

[[h/ρ]]
, (3.14)

where the ratio h/ρ in the shocked region can be calculated through the Taub adiabat
(Taub 1948)

[[h2]] =

(
ha

ρa

+
hb

ρb

)
[[p]]. (3.15)

In a general case, the mass flux can be obtained as a function of just one
thermodynamical variable (p∗) after using the EOS and the physical (h � 1) solution
of the nonlinear equation (3.15). In the case of an ideal fluid EOS,

p = (γ − 1)ρε = k(s)ργ , (3.16)

where γ is the adiabatic index, and k(s) is the polytropic constant (dependent only
on the specific entropy s), this can be done explicitly because (3.14) and (3.15) take,
respectively, the simple form

J 2 = − γ

γ − 1

[[p]]

[[h(h− 1)/p]]
, (3.17)

and[
1 +

(γ − 1)(pa − pb)

γpb

]
h2

b −
(γ − 1)(pa − pb)

γpb

hb +
ha(pa − pb)

ρa

− h2
a = 0. (3.18)

3.2. Jumps across a rarefaction wave

When considering a rarefaction wave, it is convenient to introduce the self-similar
variable ξ ≡ x/t in terms of which similarity solutions to the hydrodynamical
equations can be found. An explicit expression for ξ can be obtained by requiring
that non-trivial similarity solutions for the rarefaction wave exist. This then yields
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(see Pons et al. 2000 for details)

ξ =
vx

(
1− c2

s

)
± cs

√(
1− v2

)[
1− v2c2

s − (vx)2
(
1− c2

s

)]
1− v2c2

s

, (3.19)

where here, too, the ± signs correspond to rarefaction waves propagating to the right
or to the left, respectively. In the case of a perfect fluid, the isentropic character of
the flow allows us to calculate the velocity on the back of the wave as a solution of
an ordinary differential equation

dvx

dp
=

1

ρhW 2

(1− ξvx)

(ξ − vx)
, (3.20)

In principle, to calculate the normal fluid velocity at the tail of the rarefaction
wave, we should solve the ordinary differential equation (3.20), which might be very
expensive numerically. To overcome this, it is convenient to make use of constraints
such as those in (3.9) (which remain valid also across a rarefaction wave) and express
(3.20) in a different way. Defining A ≡ haWav

t
a = hbWbv

t
b (Pons et al. 2000), the

tangential velocity along a rarefaction wave can be expressed as

(vt )2 =A2

[
1− (vx)2

h2 +A2

]
. (3.21)

This allows us to eliminate the dependence on vt from (3.19). From the definition of
the Lorentz factor and (3.21) it is straightforward to obtain

W 2 =
h2 +A2

h2[1− (vx)2]
, (3.22)

and after some algebra, we can arrive at

(1− ξvx)

(ξ − vx)
= ±

√
h2 +A2

(
1− c2

s

)
hcs

. (3.23)

Using this results, (3.20) can be written as follows:

dvx

1− (vx)2
= ±

√
h2 +A2

(
1− c2

s

)
(h2 +A2)

dp

ρ cs

, (3.24)

Note that, in this way, we have isolated the thermodynamical quantities on the
right-hand side of (3.24) and the kinematical quantities on the left-hand side, which
can then be integrated analytically. For some particular cases (for example when the
sound speed is constant), the right-hand side too is integrable, but for a generic EOS,
a numerical integration is necessary. The velocity at the tail of the rarefaction wave
can then be obtained directly as

vx
b = tanhB, (3.25)

where

B ≡ 1
2
log

(
1 + vx

a

1− vx
a

)
±

∫ p∗

pa

√
h2 +A2

(
1− c2

s

)
(h2 +A2)

dp

ρ cs

. (3.26)

Here, h = h(p, s), ρ = ρ(p, s) and cs = cs(p, s), and the isentropic character of
rarefaction waves allows us to fix s = sa . Despite its complicated appearance, the
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integrand is a smooth, monotonic function of p, and a Gaussian quadrature with
only 10–20 points has proved to be more accurate and efficient than a third-order
Runge–Kutta integrator requiring hundreds of function evaluations to solve (3.20).

4. Limiting relative velocities
As mentioned in the previous sections, the basic operation in our approach consists

of calculating the relative normal velocity across the two initial states and comparing
it with the limiting relative velocities for each of the three possible wave patterns.
In practice, this amounts to calculating (3.6), making use of expressions (3.4) and
(3.5). In the following, we will briefly discuss the guidelines for the evaluation of
the limiting relative velocities. In doing so, we will adopt the convention of paper I
and assume that p1 > p2, with the x-axis normal to the discontinuity surface being
positively oriented from 1 to 2.

4.1. 1S← 3 C 3′ S→ 2: two shock waves

We first consider a wave pattern in which two shock waves propagate in opposite
directions. In this case, the general expression for the relative normal velocities
between the two initial states (vx

12)2S can be calculated from (3.6) with the velocities
behind the shock waves vx

3 and vx
3′ being determined through the jump condition

(3.13). Because p1 is the smallest value that the pressure at the contact discontinuity
p3 can take, the limiting value for the two shock waves branch (ṽx

12)2S can be expres-
sed as (

ṽx
12

)
2S

= lim
p3→p1

(
vx

12

)
2S

. (4.1)

Evaluating the limit (4.1) involves calculating the limits of vx
1,C and vx

2,C for p3 tending
to p1. Both these limits are straightforward to calculate and are

lim
p3→p1

vx
1,C = 0, (4.2)

lim
p3→p1

vx
2,C =

vx
2 − v̄x

3′

1− vx
2 v̄

x
3′

, (4.3)

where v̄x
3′ is simply the value of vx

3 for p3 = p1, i.e.

v̄x
3′ ≡ lim

p3→p1

vx
3′ . (4.4)

Using now the limits (4.2)–(4.3) and some lengthy but straightforward algebra, the
explicit analytic expression for the limiting value of the two shock waves branch can
be calculated as(

ṽx
12

)
2S

= − lim
p3→p1

vx
2,C =

(p1 − p2)
(
1− vx

2 V̄s

)
(V̄s − vx

2 )
{
h2ρ2(W2)2

[
1−

(
vx

2

)2]
+ p1 − p2

} . (4.5)

Here, V̄s is the velocity of the shock wave propagating towards the right in the limit
of p3 → p1 and an explicit expression for it can be found in Appendix B in the case
of an ideal fluid. Equation (4.5) will be discussed further in § 5, but it is sufficient to
point out here that the threshold value (ṽx

12)2S does not depend on the initial velocity
in the state 1, v1.

4.2. 1 R← 3 C 3′ S→ 2: one shock and one rarefaction wave

We next consider the wave pattern consisting of a rarefaction wave propagating
towards the left and of a shock wave propagating towards the right. Also in this
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case, (vx
12)SR can be calculated from (3.6) with vx

3′ being determined through the
jump condition (3.13) and vx

3 from the numerical integration of (3.20) in the range
[p1, p3]. Because p2 is now the lowest pressure in the unknown region behind the
two nonlinear waves, the limiting value for the one shock and one rarefaction waves
branch (ṽx

12)SR can be expressed as(
ṽx

12

)
SR

= lim
p3→p2

(
vx

12

)
SR

. (4.6)

In the limit p3 → p2, the right-propagating shock is suppressed, vx
3′ → vx

2 so that

lim
p3→p2

vx
2,C = 0, (4.7)

and (
ṽx

12

)
SR

= lim
p3→p2

vx
1,C. (4.8)

Defining now

B1 ≡ 1
2
log

(
1 + vx

1

1− vx
1

)
, (4.9)

and using (3.25), it is readily obtained that

(
ṽx

12

)
SR

= lim
p3→p2

tanh(B1 −B) = tanh




∫ p2

p1

√
h2 +A2

1

(
1− c2

s

)
(
h2 +A2

1

)
ρ cs

dp


 , (4.10)

where the above integral can be evaluated numerically. A closer look at the integral
shows that only quantities in the left state are involved (through the constant A1 ≡
h1W1v

t
1) and that (ṽx

12)SR does not depend on the initial velocity in the state 2, v2.
This property has an important consequence that will be discussed in § 5.

4.3. 1 R← 3 C 3′ R→ 2: two rarefaction waves

When the wave pattern consists of two rarefaction waves propagating in opposite
directions, (vx

12)2R can be calculated from (3.6) with the velocities behind the waves
being calculated using (3.25) and (3.26). Since the lowest value of the pressure behind
the tails of the rarefaction waves is zero, the limiting value for the two rarefaction
waves branch (ṽx

12)2R is given by(
ṽx

12

)
2R

= lim
p3→0

(
vx

12

)
2R

. (4.11)

Proceeding as in § 4.2, we can now express (ṽx
12)2R as

(
ṽx

12

)
2R

=
v̄x

1,C − v̄x
2,C

1−
(
v̄x

1,C
)(

v̄x
2,C

) , (4.12)

where

v̄x
1,C = tanh




∫ 0

p1

√
h2 +A2

1

(
1− c2

s

)
(
h2 +A2

1

)
ρ cs

dp


 , (4.13)
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Figure 1. Relative normal velocity between the two initial states as a function of the pressure
at the contact discontinuity. Each curve is the continuous joining (marked by solid dots) of
three different curves corresponding to two shock waves (2S), one shock and one rarefaction
wave (SR), and two rarefaction waves (2R). —, zero tangential velocities; - - -, vt

1 = 0.7 = vt
2.

The initial state vectors are those of Sod’s problem. p1 = 1.0, ρ1 = 1.0, p2 = 0.1, ρ2 = 0.125.

v̄x
2,C = tanh




∫ p2

0

√
h2 +A2

2

(
1− c2

s

)
(
h2 +A2

2

)
ρ cs

dp


 , (4.14)

and where A2 ≡ h2W2v
t
2. While the determination of (ṽx

12)2R requires the numerical
calculation of the integrals (4.13) and (4.14), it has very little practical importance as
it marks the transition to a wave pattern with two rarefaction waves separated by
a vacuum; this is a very rare physical configuration which cannot be handled by a
generic numerical code.

Note that in computing (4.12), both the left and right state quantities are involved
and, as a result, (ṽx

12)2R will depend on both v1 and v2. This property will be important
in the discussion in § 5.

Figure 1 shows the functional behaviour of vx
12 = vx

12(p3) and how this behaviour is
changed by the presence of non-zero tangential velocities. The initial conditions are
those of a modified Sod’s problem (Sod 1978) in which p1 = 1.0, ρ1 = 1.0, vx

1 = 0.0,
p2 = 0.1, ρ2 = 0.125, vx

2 = 0.0, and γ = 5
3
. Each of the two curves shown is composed

of three different curves (joined at the solid dots) corresponding to wave patterns
consisting of two shock waves (2S), one shock and one rarefaction wave (SR), and
two rarefaction waves (2R). While the solid curve refers to initial conditions with
zero tangential velocities, the dashed curve is produced when non-zero tangential
velocities, vt

1 = 0.7 = vt
2, are considered. Note that also in this latter case, the
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Figure 2. The same as in figure 1, but here the different line types mark the different branches
corresponding to ---, two shock waves · · ·, one shock and one rarefaction wave; —, two
rarefaction waves. The functional behaviour is modified when only one of the initial tangential
velocities is varied (a) vt

2, (b) vt
1, while all the other components of the initial state vectors are

unchanged.

three branches are monotonically increasing with p3 (a fundamental property whose
mathematical proof can be found in Appendix A) but are all altered by the presence
of non-zero tangential velocities. The consequences of this will be discussed in the next
section.

5. Relativistic effects
The changes in the functional behaviour of vx

12 = vx
12(p3) introduced by non-zero

initial tangential velocities suggest that new qualitative differences could be found in
a Riemann problem with multi-dimensional relativistic flows. This was first discussed
in Rezzolla & Zanotti (2002) where the basic features of new relativistic effects
were briefly pointed out. This section is dedicated to a more detailed discussion
of how the changes in the functional behaviour of vx

12 = vx
12(p3) are responsible

for relativistic effects in the dynamics of nonlinear waves. Before entering into the
heart of the discussion, however, it is useful to remind ourselves that in Newtonian
hydrodynamics a Riemann problem with multi-dimensional flows does not depend on
the values of the tangential velocities at the two initial states. Rather, different wave
patterns can be produced only after a suitable change in either the normal velocity,
the rest-mass density or the pressure. This is essentially because tangential velocities
are not changed across Newtonian nonlinear waves. In relativistic hydrodynamics, on
the other hand, this is not the case and is the origin of the effects discussed below.

Let us restrict our attention to a situation in which the tangential velocity of only
one of the two initial states is varied. This is simpler than the general case as it
represents a one-dimensional cross-section of the three-dimensional parameter space,
but it maintains all of the relevant properties. Figure 2 shows the relative normal
velocity for the same initial conditions of figure 1 where either vt

1 or vt
2 is varied while

all the other quantities of the initial state vectors are unchanged. Different line types
mark the different branches (joined at the filled dots) describing the relative velocity
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Figure 3. Transition from an SR wave pattern to a 2S one. (a) and (b) show the exact solution
of the Riemann problem corresponding to models (a) and (e) in table 1, respectively. The
initial-state vectors are identical except for the values of vt

2. —, p; · · ·, ρ; ---, vx .

corresponding to two shock waves (2S, dashed line), one shock and one rarefaction
wave (SR, dotted line), and two rarefaction waves (2R, continuous line), respectively.
Figure 2 indicates that when tangential velocities are present, the relative normal
velocity is a function of p3 but also of vt

1 and vt
2.

Consider, for instance, the case in which the normal velocities are chosen to be
vx

1 = 0.5, vx
2 = 0, and that there are no tangential velocities. In this case, (vx

12)0 = 0.5
and figure 2(a) shows that the solution to the Riemann problem falls in the SR

branch, hence producing a wave pattern consisting of a shock and a rarefaction wave
moving in opposite directions. This is shown in more detail in figure 3(a) where the
different types of line show the solution of the Riemann problem at a time t > 0
for the pressure (continuous line), the rest-mass density (dotted line) and the velocity
(dashed line).

However, if we now maintain the same initial conditions, but allow for non-zero
tangential velocities in state 2, figure 2(a) also shows that the solution to the Riemann
problem can fall in the 2S branch, hence producing a wave pattern consisting of
two shock waves moving in opposite directions. This is shown in figure 3(b) which
illustrates the solution of the same Riemann problem, but with initial tangential
velocities vt

1 = 0 and vt
2 = 0.9. Note that except for the tangential velocities, the

solutions in figure 3 have the same initial-state vectors, but different intermediate
ones (i.e. p3, ρ3, ρ3′ and vx

3 ).
The Riemann problem shown in figure 3 is only one possible example, but shows

that a change in the tangential velocities can produce a smooth transition from one
wave pattern to another while maintaining the initial states unmodified. Furthermore,
because the coupling among the different states is produced by the Lorentz factors,
this is not sensitive on the sign chosen for the tangential velocity. The transition from
one wave pattern to the other is illustrated better in figure 4 where we have collected
in a three-dimensional plot a sequence of solutions for the pressure in which vt

2 is
gradually increased from 0 to 0.9. Note that when vt

2 = 0, the SR wave pattern is well
defined and the pressure at the contact discontinuity is intermediate between p1 and
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Figure 4. Sequence of solutions for the pressure in Sod’s problem. The initial tangential
velocity vt

2 is gradually increased from 0 to 0.9. The first and last solutions of this sequence
are also plotted in figure 3.

p2. Note also that as vt
2 is increased, the wave pattern gradually changes, p3 increases

until it becomes larger than p1, signalling the transition to a 2S wave pattern.
The transition does not always produce a solution consisting of two shock waves.

Suppose, in fact, that the normal velocities are now chosen to be vx
1 = 0, vx

2 = 0.5. We
can repeat the considerations made above and start by examining the wave pattern
produced when there are zero tangential velocities. In this new set-up, (vx

12)0 = −0.5
and figure 2(b) shows that the solution to the Riemann problem still falls in the
SR branch (cf. dashed line), with the corresponding solution at a time t > 0 being
presented in figure 5(a). (Note that the wave patterns in figures 3 and 5 both consist
of a shock and a rarefaction wave, but have alternating initial normal velocities.)

When non-zero tangential velocities are now considered in state 1, figure2(b) shows
that (vx

12)0 can fall in the 2R branch, hence producing a wave pattern consisting of
two rarefaction waves moving in opposite directions. The solution to this Riemann
problem is shown in figure 5(b) where we have chosen initial tangential velocities
vt

1 = 0.999 and vt
2 = 0. In this case too, it should be noted that, except for the

tangential velocities, the solutions in figure 5 have the same initial-state vectors, but
different intermediate ones.

In analogy with figure 4, we have collected in figure 6 a sequence of solutions for
the pressure in which vt

1 is gradually increased from 0 to 0.999. Here too, when vt
2 = 0,

the SR wave pattern is well defined and the pressure at the contact discontinuity
is intermediate between p1 and p2. However, as vt

1 is increased, the wave pattern
gradually changes, p3 decreases until it becomes smaller than p2, signalling the
transition to a 2R wave pattern. Note that while this happens, the region of the flow
covered by the rarefaction wave becomes progressively smaller.
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Figure 5. The same as in figure 3, but for models (h) and (n) in table 1. Also, in this
case, the initial-state vectors are identical except for the values of vt

1. Note that in (b), the
left-propagating rarefaction wave covers a very small region of the flow and is closely followed
by the contact discontinuity.
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Figure 6. The same as in figure 4, but here the initial tangential velocity vt
1 is gradually

increased from 0 to 0.999. The first and last solutions of this sequence are also plotted in
figure 5.

In table 1 we have summarized a few of the solutions shown in figures 4 and 6,
presenting numerical values for all of the relevant quantities in the Riemann problem
when different combinations of the tangential velocities are used.

The transformation of a rarefaction wave into a shock wave and vice versa can also
be appreciated by considering how the velocities at which the various nonlinear waves
propagate in the unperturbed media change when the tangential velocities vt

1 and
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Model vx
1 vx

2 vt
1 vt

2 p∗ vx
∗ ρ3 ρ3′ Wave pattern

(a) 0.5 0.0 0.0 0.000 0.597 0.640 0.734 0.342 SR
(b) 0.5 0.0 0.0 0.300 0.621 0.631 0.751 0.349 SR
(c) 0.5 0.0 0.0 0.500 0.673 0.611 0.788 0.364 SR
(d) 0.5 0.0 0.0 0.700 0.787 0.570 0.866 0.394 SR
(e) 0.5 0.0 0.0 0.900 1.150 0.455 1.088 0.474 2S
(f) 0.5 0.0 0.0 0.990 2.199 0.212 1.593 0.647 2S
(g) 0.5 0.0 0.0 0.999 3.011 0.078 1.905 0.750 2S

(h) 0.0 0.5 0.000 0.0 0.154 0.620 0.326 0.162 SR
(i) 0.0 0.5 0.300 0.0 0.139 0.594 0.306 0.152 SR
(j) 0.0 0.5 0.500 0.0 0.115 0.542 0.274 0.136 SR
(k) 0.0 0.5 0.700 0.0 0.085 0.450 0.228 0.113 2R
(l) 0.0 0.5 0.900 0.0 0.051 0.280 0.168 0.084 2R
(m) 0.0 0.5 0.990 0.0 0.031 0.095 0.123 0.061 2R
(n) 0.0 0.5 0.999 0.0 0.026 0.031 0.110 0.052 2R

Table 1. Solution of the modified Sod’s problem at t = 0.4. All models refer to an ideal EOS
with γ = 5

3
and share the same values of pressure and rest-mass density: p1 = 1.0, ρ1 = 1.0,

p2 = 0.1, ρ2 = 0.125. The only differences present in the problems considered are in the normal
relative velocity and in the tangential velocities. These quantities are reported in the first three
columns, and the remaining ones show a few relevant quantities of the solution in the newly
formed region as well as the wave pattern produced.
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Figure 7. Velocities of the various nonlinear waves when the tangential velocities vt
1 and vt

2
are varied separately. The initial conditions are those of Sod’s problem and the different curves
refer to the head and tail of a left-propagating rarefaction wave (i.e. ξ−t l , ξ−hd ), to the head and
tail of a right-propagating rarefaction wave (i.e. ξ+

t l , ξ+
hd ), and to a left or a right-propagating

shock wave (i.e. V −s , V +
s ).

vt
2 are varied separately. This information is contained in figure 7 in which different

curves show the behaviour of the head and tail of a left-propagating rarefaction wave
(i.e. ξ−tl , ξ−hd), of the head and tail of a right-propagating rarefaction wave (i.e. ξ+

tl ,
ξ+
hd), and of a left- or a right-propagating shock wave (i.e. V −s , V +

s ). Figure 7(a), in
particular, shows the transition from a SR to a 2S wave pattern with the dotted
vertical line marking the value of vt

2 at which this occurs. Similarly, figure 7(b) shows
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the transition from an SR to a 2R wave pattern and the dotted vertical line is again
used to mark the limiting value of vt

1.
The effects discussed in this section have a purely special relativistic origin. They

might conflict with our physical intuition, especially when the latter is based on
the knowledge of the Riemann problem in Newtonian hydrodynamics. However, the
behaviour reported here is typical of those special relativistic phenomena involving
Lorentz factors including also tangential velocities. A useful example in this respect
is offered by the relativistic transverse-Doppler effect, in which the wavelength of a
photon received from a source moving at relativistic speeds changes also if the source
has a velocity component orthogonal to the direction of emission of the photon
(Rindler 1982). In this case too, a Lorentz factor including the transverse velocity is
responsible for the effect.

Finally, it should be pointed out that there exists a set of initial conditions for
which these new relativistic effects cannot occur. These initial conditions are those in
which vx

1 = vx
2 as in the classic ‘shock-tube’ problem, where vx

1 = 0 = vx
2 . In this case,

in fact, (vx
12)0 = 0 and the solution of the Riemann problem will be given by a wave

pattern consisting of a shock and a rarefaction wave, independently of the values of
the tangential velocities (cf. limits (A 2) and (A 4 in Appendix A).

6. Conclusions
We have shown that an efficient solution of the exact Riemann problem in

multidimensional relativistic flows can be obtained after exploiting the properties
of the invariant expression for the relative normal velocity between the two initial
states. The new procedure proposed here is the natural extension of a similar
method presented for the exact solution of the Riemann problem in one-dimensional
relativistic flows (Rezzolla & Zanotti 2001). Using information contained in the
initial-state vectors, this approach predicts the wave pattern that will be produced
in the Riemann problem, determines the set of equations to be solved and brackets
the interval in pressure where the solution should be sought. Because it is logically
straightforward, this approach results in an algorithm which is very easy to implement
numerically and work is now in progress to assess the computational speed-up in
multidimensional codes.

An important aspect of this strategy is that it naturally points out relativistic
effects that can take place whenever the initial relative velocity normal to the initial
surface of discontinuity is non-zero. When this is the case, in fact, the tangential
velocities can affect the solution of the Riemann problem and cause a transition from
one wave pattern to another. More specifically, by varying the tangential velocities
on either side of the initial discontinuity while keeping the remaining state vectors
unchanged, the nonlinear waves involved in the solution Riemann problem can change
from rarefaction waves to shock waves and vice versa. These effects have a purely
relativistic nature, do not have a Newtonian counterpart and could be relevant in
several astrophysical scenarios, such as those involving relativistic jets or γ -ray bursts,
in which nonlinear hydrodynamical waves with large Lorentz factors and complex
multidimensional flows are expected (Blandford 2002; Meszaros 2002).

As a final remark, it is worth pointing out that while the content of this paper is
focused on special relativistic hydrodynamics and flat space–times, the local Lorentz
invariance allows us to extend the results discussed here also to curved space–times
and general relativistic numerical calculations (Pons et al. 1998; and Font 2000 for a
review).
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Appendix A. Monotonicity of the relative velocity as function of p∗

This Appendix is devoted to the proof that vx
12 is a monotonic function of p∗;

as mentioned in the main text, this is an important property and the basis of our
approach.

With our choice of considering the initial left state as the one with highest pressure,
the proof of monotonicity will be obtained if we show that vx

12 is a monotonically
increasing function of p∗. Indicating then with a prime the first derivative with respect
to p∗ and dropping the upper index x in the notation for the normal velocities, it is
straightforward to derive that the first derivative of expression (3.6) is given by

v′12 =
v′1,C

(
1− v2

2,C
)
− v′2,C

(
1− v2

1,C
)

(1− v1,C v2,C)2
. (A 1)

Equation (A 1) suggests that the proof that vx
12 is monotonically increasing will

follow if it can be shown that v′1,C and −v′2,C are both positive. On the other hand,
using (3.4) and (3.5), the proof of the monotonicity will follow from showing that
(vx

3 )
′ < 0 and (vx

3′)
′ > 0. While these inequalities must hold irrespective of the nonlinear

wave considered, the proofs will be different for the different waves considered.
When a rarefaction wave is present, the proof is indeed straightforward. According

to (3.20) and (3.23), in fact, (vx)′ across the rarefaction wave is negative when the
rarefaction wave propagates towards the left (implying that (vx

3 )
′ is negative) and it is

positive when the rarefaction wave propagates towards the right (implying that (vx
3′)
′

is positive).
If a shock wave is present, on the other hand, a proof for the most general case and

in terms of simple algebraic relations cannot be given. On the other hand, a rather
simple analytic proof can be found in the simpler case in which vx

1 = vx
2 = 0; while

this is certainly not the most general case, numerical calculations have shown that
the result holds in general. Consider therefore a shock wave propagating towards the
left (a similar analysis can be repeated for the right-propagating shock wave); after
lengthy but straightforward calculations, it is possible to show that

(vx
3 )
′ =

H1

(
Vs − vx

1

)(
1− Vsv

x
1

)
−H1
p

(
1−

(
vx

1

)2)
V ′s − V ′s (
p)2[

H1

(
Vs − vx

1

)
+ 
pVs

]2
, (A 2)

where we have set H1 ≡ h1ρ1W
2
1 and 
p ≡ p − p1 > 0, and where p is the pressure

behind the shock. If we now impose that vx
1 = 0, we can write the derivative of

(3.12) as

V ′s
Vs

=
J ′

J

ρ2
1W

2
1

J 2 + ρ2
1W

2
1

. (A 3)

Substituting (A 3) into (A 2), we can conclude that (vx
3 )
′ is negative if and only if

J
(
ρ2

1W
2
1 + J 2

)
h1 − ρ1
pJ ′

(
ρ1h1W

2
1 + 
p

)
< 0. (A 4)
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Figure 8. —, the Taub adiabat. A, B , the states ahead of and behind a left-propagating
shock wave. See the main text for a discussion.

Using (3.17) to calculate J ′, we find that (A 4) can be written as

−ρ1(H1 −
p)

J 2
− 2h1 <

1

γ (γ − 1)

ρ1(H1 + 
p)

ρ2

[
1

ε
− γ (γ − 2)

]
, (A 5)

where ρ and ε are the rest-mass density and the specific internal energy behind the
shock front. Because the right-hand side of (A 5) is always positive for any γ � 2,
the condition for monotonicity, (A 5), will be satisfied if its left-hand side is negative,
i.e. if

−J 2 < −ρ1


p −H1

2h1

≡ −α. (A 6)

At this point, the proof can be continued graphically and by making use of the
Taub adiabat. In the plane (h/ρ, p), in fact, the Taub adiabat (3.18) selects the points
solutions of the hydrodynamical equations across a shock wave, therefore connecting
the state ahead of the shock front with the one behind it. In figure 8, this curve is
shown as a solid line and we have indicated with the points A and B the states ahead
(region 1) and behind (region 3) the shock front. Once an initial state A has been
chosen, the mass flux will determine the point B of the Taub adiabat solution of the
Rankine–Hugoniot relations. Because of this, the slope of the chord connecting the
points A and B (shown as a dotted line in figure 8) is equal to −J 2. The dashed line
in figure 8 shows the equivalent of the Taub adiabat passing through the state A, but
having mass flux equal to α1/2, i.e.

p = −α

(
h

ρ
− h1

ρ1

)
+ p1. (A 7)

The point B ′ on such a curve represents the state behind the shock wave and, as
is clearly shown in figure 8, the slope of the chord AB′ is always larger than the
corresponding slope for the chord AB, thus stating that the condition (A 5) is indeed
verified and that (vx

3′)
′ is therefore positive.
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Appendix B. Dependence of the limiting values on the tangential velocities
As mentioned in § 5, the appearance of the new relativistic effects is related to the

behaviour of the function vx
12 = vx

12(p3) for different values of the initial tangential
velocities and in particular to how the three branches composing the curve change
under variation of vt

1,2. As a result, the occurrence of these effects can be recast into
the study of the dependence of (ṽx

12)2S, (ṽ
x
12)SR and (ṽx

12)2R on the tangential velocities.
Using expressions (4.5), (4.10) and (4.12), this dependence can be summarized as
follows(

ṽx
12

)
2S

=
(
ṽx

12

)
2S

(
vt

2

)
,

(
ṽx

12

)
SR

=
(
ṽx

12

)
SR

(
vt

1

)
,

(
ṽx

12

)
2R

=
(
ṽx

12

)
2R

(
vt

1, v
t
2

)
, (B 1)

and can be best studied by considering the limits of (ṽx
12)2S, (ṽ

x
12)SR and (ṽx

12)2R when
W1,2 →∞. In the case of a 2S wave pattern, (4.5) simply indicates that

lim
W2→∞

(
ṽx

12

)
2S

= 0. (B 2)

This result is also shown in figure 2(a), where the right solid dot converges to zero as
W2 →∞, while the left one does not vary. The limit (B 2) can also be used to deduce
that for any (vx

12)0 > 0, there exists a value W̄2 of W2 such that(
vx

12

)
0
>

(
ṽx

12

)
2S

for W2 > W̄2. (B 3)

A direct consequence of (B 3) is that given a Riemann problem having initial-state
vectors with positive relative normal velocity and producing an SR wave pattern, it
is always possible to transform it into a 2S wave pattern by increasing the value of
the initial tangential velocity in the state of initial lower pressure.

In the case of an SR wave pattern, we refer to (4.10) to see that in the limit of
W1 →∞ the integrand vanishes (A1 →∞) and therefore:

lim
W1→∞

(
ṽx

12

)
SR

= 0. (B 4)

As for the previous one, the limit (B 4) can be deduced from figure 2(b), where the
left solid dot converges to zero as W1 →∞, while the right one does not vary. Also in
this case, the limit (B 4) can be used to conclude that for any (vx

12)0 < 0, there exists
a value W̄1 of W1 such that(

vx
12

)
0
<

(
ṽx

12

)
SR

for W1 > W̄1, (B 5)

and therefore causing an initial SR wave-pattern solution to become a 2R one as a
consequence of an increased tangential velocity in the state of initial higher pressure.

Overall, (B 2) and (B 4) indicate that for tangential velocities assuming increasingly
larger values, the SR branch of the vx

12 curve spans a progressively smaller interval of
relative normal velocities. When the tangential velocities reach their asymptotic values,
the SR branch reduces to a point. In practice, therefore, the main effect introduced
by relativistic tangential velocities in a Riemann problem is that of disfavouring the
occurrence of a wave pattern consisting of a shock and a rarefaction wave.

For completeness, we also report the limit of the relative normal velocity marking
the branch of two rarefaction waves separated by a vacuum. In this case, the limit is
taken for both W1 and W2 tending to infinity, and using (4.13)–(4.14) yields

lim
W1,2→∞

(
ṽx

12

)
2R

= 0. (B 6)
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Appendix C. An explicit expression for V̄s

In this Appendix, we provide an explicit expression of the velocity of the shock
wave propagating towards the right in the limit of p3 → p1 and when the fluid is
ideal. This quantity, which is necessary to calculate the limiting relative velocity (ṽx

12)2S

in (4.5), can be computed easily as cf. (3.12)

V̄s =
ρ2

2W
2
2 vx

2 + |J23′ |
√

J 2
23′ + ρ2

2W
2
2

[
1−

(
vx

2

)2]
ρ2

2W
2
2 + J 2

23′
, (C 1)

where the mass flux J23′ is given by (cf. (3.17))

J 2
23′ = −

(
γ

γ − 1

)
p1 − p2

h3′(h3′ − 1)/p1 − h2(h2 − 1)/p2

, (C 2)

and where, finally, h3′ is the positive root of the Taub adiabat (3.18) in the limit of
p3 → p1, i.e.

h3′ =
(
√
D− 1)(γ − 1)(p1 − p2)

2[(γ − 1)p2 + p1]
, (C 3)

where

D = 1− 4γp1

(γ − 1)p2 + p1

(γ − 1)2(p1 − p2)2

[
h2(p2 − p1)

ρ2

− h2
2

]
. (C 4)
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